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We report on experimental studies of steady-state two-phase flow in a quasi-two-dimensional porous me-
dium. The wetting and the nonwetting phases are injected simultaneously from alternating inlet points into a
Hele-Shaw cell containing one layer of randomly distributed glass beads, initially saturated with wetting fluid.
The high viscous wetting phase and the low viscous nonwetting phase give a low viscosity ratio M =10−4.
Transient behavior of this system is observed in time and space. However, we find that at a certain distance
behind the initial front a “local” steady-state develops, sharing the same properties as the later “global“ steady
state. In this state the nonwetting phase is fragmented into clusters, whose size distribution is shown to obey a
scaling law, and the cutoff cluster size is found to be inversely proportional to the capillary number. The steady
state is dominated by bubble dynamics, and we measure a power-law relationship between the pressure
gradient and the capillary number. In fact, we demonstrate that there is a characteristic length scale in the
system, depending on the capillary number through the pressure gradient that controls the steady-state
dynamics.
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I. INTRODUCTION

There is truly a broad range of different immiscible mul-
tiphase flows in porous media �1–3�. Intrigued by the ob-
served complex dynamics and geometry, researchers have
over the past decades taken great interest to explain and
model these systems �1–7�. Not only is it important to un-
derstand these processes from a scientific point of view, but
there are also huge commercial advantages. Many questions
in this field still remain unanswered; thus, to develop a better
understanding is highly warranted.

Traditionally, experimental and theoretical works focused
on invasion processes: pure drainage �a nonwetting fluid dis-
placing a wetting fluid from a porous medium�, or pure im-
bibition �a wetting fluid displacing a nonwetting fluid from a
porous medium� �8,9�. Different displacement patterns were
observed and classified into capillary fingering �6,10�, which
has been modeled by invasion percolation �11�, viscous fin-
gering �7,12–16�, and stable front displacement �8,17,18�.
Later experimental work has also been done by Tsakiroglou
et al., focusing on transport coefficients of such systems
�19–22�. The common feature of these effects is that they are
inherently transient. In large-scale reservoir systems there
will be regions and length scales where one or both of the
fluids are fragmented and transported as bubbles, i.e. dy-
namically very different from the regimes described above.
This transport is governed by the interplay and competition
between drainage and imbibition, and it is not sufficient to
look at these two processes separately. We therefore ap-
proach this problem by studying the steady-state regime ex-
perimentally on laboratory scale inside “a representative el-
ementary volume.”

This kind of flow regime, where drainage and imbibition
are occurring simultaneously, has received less attention than
the now classic “pure invasion” problems. There is a short
literature listing of steady-state pore-scale studies, but to the
best of our knowledge little experimental data are available.
Avraam and Payatakes �23–25� did pore-scale steady-state
experiments using etched two-dimensional glass models.
Their main focus was relative permeability and a qualitative
description and classification of flow regimes. Payatakes and
co-workers worked on numerical modeling and theory for
such problems �26–30�. In an experimental setup quite simi-
lar to ours, Vedvik et al. did experiments on fragmentation of
capillary fingering clusters in a background viscous field
�31�. Also numerical work has focused on a steady-state re-
gime. By means of two-dimensional numerical network
simulations Knudsen et al. and Ramstad and Hansen studied
average flow properties and cluster formation in steady-state
two-phase flow �32–35�.

In this paper we report on an experiment, in which a
nonwetting fluid with low viscosity �air� and a highly viscous
wetting fluid �a glycerin/water solution� simultaneously are
injected into a horizontal two-dimensional porous medium.
Hence, gravity has no influence on the displacement. The
medium is initially saturated with the wetting fluid, and we
investigate the initial transient regime, where the two fluids
mix, invade, and fill the system. We demonstrate that a
steady state is reached after some characteristic time. By
letting the injection continue beyond this point, we study the
flow dynamics and transport properties in steady state. The
main characteristic of this process is that the nonwetting fluid
is broken up and transported through the system as discon-
necting bubbles. We therefore pay special attention to the
size distribution of nonwetting clusters �bubbles�. For six
different injection rates �spanning a range of two orders of
magnitude�, the probability density of cluster size is mea-
sured and found to obey a scaling law. We also report results*k.t.tallakstad@fys.uio.no
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on the relation between the global pressure, a characteristic
cluster length scale, and the capillary number.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Figs. 1 and 2. We use
a monolayered porous stratum consisting of glass beads of
diameter a=1 mm, randomly spread between two contact

papers �16,17�. The model is a transparent rectangular box of
dimensions L�W=850�420 mm2 and thickness a �see
Table I for a listing of model parameters�.

A 2-cm-thick Plexiglas plate is placed on top of the
model. In order to squeeze the beads and the contact paper
together with the upper plate, a Mylar membrane mounted
on a 2.5-cm-thick Plexiglas plate, below the model, is kept
under a 3.5 m water pressure as a “pressure cushion.” The
upper and the lower plates are kept together by clamps, and
the side boundaries are sealed by a rectangular silicon rubber
packing. The upper plate has 15 independent drilled inlets for
fluid injection and a milled outlet channel �Fig. 2�. The dis-
tance between the inlets and the outlet channel defines the
length of the model.

The wetting fluid used in all our experiments is a 85
−15 % by weight glycerol-water solution dyed with 0.1%
Negrosine �black color�. Air is used as the nonwetting fluid.
This gives a black and white fluid pair with good visual
contrast. The wetting and the nonwetting fluids have viscosi-
ties of �w�0.11 Pa s and �nw=1.9�10−5 Pa s, respec-
tively. The viscous ratio is thus M =�nw /�w�10−4, which is
typical for a gas/liquid system. Other fluid parameters are
found in Table I. The model is held at a constant temperature
of 20 °C during the experiments. This is monitored by mea-
suring the temperature in the wetting fluid at the outlet, thus
allowing an accurate estimation of the viscosity of the fluid.

During experiments the pressure is recorded at four dif-
ferent positions, in one of the air inlet tubes and in the wet-
ting fluid at the edge of the model: close to the inlet, at a
distance L /2 in the flow direction, and in the outlet channel
�Fig. 2� using SensorTechnics 26PC0100G6G Flow Through
pressure sensors.

The flow structure is visualized by illuminating the model
from below with a light box and pictures are taken at regular
intervals with a Pixelink Industrial Vision PL-A781 digital
camera, which is controlled by a computer over a FireWire
connection. This computer records both the pictures and the
pressure measurements. Each image contains 3000
�2208 pixels, which corresponds to a spatial resolution of
�0.19 mm per pixel �27 pixels in a pore of size of 1 mm2�.

outlet inlet

clamps

light box

porous medium

digital camera

pressure cushion

pressure cushion

mylar film

contact paper

plexiglas plate

FIG. 1. Sketch of the experimental setup with the light box for
illumination, the porous model, and the digital camera. The porous
medium is sandwiched between two contact papers and kept to-
gether and temperature controlled with a water-filled pressure
cushion.

FIG. 2. Sketch of the experimental model. There are 15 inde-
pendent inlet holes with attached tubes where we inject �alternately�
the wetting and the nonwetting phase with syringe pumps. This
leads to a mixing of the two phases inside the model two-
dimensional porous medium �a random monolayer of glass beads�
and a mix of the two phases flows out of the outlet channel at the
opposite end of the system. In one of the inlet tubes �nonwetting
phase� and in the porous model �wetting phase� pressure sensors are
mounted for pressure measurements.

TABLE I. Geometrical parameters of the experimental setup and
measured fluid properties. The absolute permeability �0 is measured
in a separate experiment with the wetting fluid only.

Description Symbol Value

Model length L 850 mm

Model width W 420 mm

Bead diameter a 1.0 mm

Porosity �0 0.63

Permeability �0 �1.95�0.1��10−5 cm2

Wetting fluid viscosity �w 0.11 Pa s

Nonwetting fluid viscosity �nw 1.9�10−5 Pa s

Wetting fluid density �w 1217 kg m−3

Nonwetting fluid density �nw 1.168 kg m−3

Viscosity ratio M �10−4

Surface tension � 6.4�10−2 N m−1

TALLAKSTAD et al. PHYSICAL REVIEW E 80, 036308 �2009�

036308-2



The color scale contains 256 gray levels. The gray level dis-
tribution of the image presents two peaks corresponding, re-
spectively, to the white air-filled and dark gray glycerol-filled
parts of the image. The image is thresholded at a constant
offset from the white peak so as to obtain a representative
boundary between the two phases �18�. All further image
treatments are performed on the resulting black and white
image. The exact choice of the threshold value influences the
extracted results. However, by visual inspection and analyses
of results from a range of threshold values around the chosen
one, the deviations are found to be small and systematic with
this perturbation. We therefore claim that this procedure of
choosing the threshold value is consistent and that the result-
ing data may be compared directly.

Close to the inlet and to a small degree along the model
perimeter, there are boundary effects in the displacement
structure. To avoid these, we define a �69�30� cm region of
interest �ROI� in the central part of the model. Image analy-
sis is then performed only inside this ROI.

In all experiments the porous model is initially filled with
the wetting glycerol-water solution. An experiment is then
started by injecting the wetting fluid and the nonwetting fluid
from every other inlet hole �Fig. 2�. Counting from one side
this means that syringes 1 ,3 ,5 , . . . ,15 altogether eight indi-
vidual syringes for the wetting fluid are used for the injec-
tion. Similarly, syringes 2 ,4 ,6 , . . . ,14 altogether seven indi-
vidual syringes are used for the nonwetting fluid. The
movements of all 15 syringes are controlled by the same step
motor, setting an equal displacement rate.

III. RESULTS

As the nonwetting fluid enters the model, it first forms
elongated clusters which are connected with their respective
inlets. As these clusters grow, they are snapped off by the
wetting fluid and transported as bubbles along the flow to-
ward the outlet of the model. Over time the nonwetting air
clusters propagate all the way to the outlet of the model, thus
filling the whole porous matrix with a mixture of air and
glycerol-water solution. The air only exists in the form of
fragmented clusters while the glycerol-water solution perco-
lates the model at all times. It is observed that the smallest
air clusters usually are immobile and trapped. Larger clusters
on the other hand are mobile and propagate in the porous
medium. However, mobilization of trapped clusters can oc-
cur when they coalesce with larger migrating clusters. Con-
versely, fragmentation and trapping of migrating clusters also
take place, so the fate of an air cluster is thus highly unde-
cided. In this context it is worth mentioning the detailed
pore-scale study of cluster mobilization and entrapment by
Avraam and Payatakes �23,39�.

We run the experiment for a significant time after air
breakthrough. Shortly after breakthrough the transport pro-
cess reaches steady state, meaning that both phases are trans-
ported through the model without “long-time” flow param-
eter changes, implying that the pressure difference, relative
permeabilities, saturations, and cluster distributions are on
average constant. Images of the evolution of the transient
part of a typical experiment are shown in Fig. 3.

In Fig. 4 pressure differences over the model are plotted
as function of time. Three pressure sensors are used: at the
inlet, in the middle of the model, and at the outlet. Even
though pressure measurements are local, and measured in the
wetting phase, they reflect on average the global pressure
development of both phases. If both phases are present along
a given cross section transverse to the flow, the pressure
along this cross section will only vary by small capillary and
viscous fluctuations. Due to the size of our system and the
high viscosity of the wetting phase, the measured pressure
drop is much larger than these fluctuations. Physically rel-
evant for the motion inside the model is the pressure differ-
ence between �i� inlet and outlet and �ii� middle of the model
and outlet which, for brevity, are referred to as inlet and
middle pressures. In Fig. 4�a� we can see the signature of a
“breakthrough” just before t�60 min in the pressure sig-
nals. Here, the apparent linear increase in pressure stops.
Shortly after this time the two signals approach a constant
level as we reach steady state. In the transient regime the
overall pressure behavior at the two sensors appears differ-
ent. As air enters the model, the inlet pressure starts to in-
crease and it increases linearly until breakthrough, while the

2 h 23 min

10cm

7 h 37 min

16 h 22 min

(b)

(a)

(c)

FIG. 3. For the Ca=0.0079 experiment, the system is shown at
three different times. Both fluids are injected at left hand side; the
outlet is at the right. The upper panel shows a sample in the early
transient regime. The water-glycerol mixture is of dark color. This
is best seen to the right of the upper panel, where the small bright
dots are the solid glass beads. The air is bright white, and glass
beads surrounded by air may be indiscernible. The middle panel
shows a later stage in the transient. The lower panel shows fully
developed steady state.
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middle pressure is constant until the air bubbles reach the
sensor ��30 min�. At this point the middle sensor pressure
also starts to increase linearly. This is because the average
pressure at a point inside the porous medium is controlled by
the viscous pressure drop between that point and the outlet
channel. Moreover, as air bubbles pass the sensor, the effec-
tive permeability of the medium in front of the sensor is
lowered. In order to maintain constant flow rate, the pressure
has to increase.

In order to learn more about the transient and the transi-
tion to steady state, here, we present the results of six experi-
ments performed at different injection rates. The injection
rate is controlled by the speed of the step motor used to
control the syringe pistons. The rates and the corresponding
capillary numbers are given in Table II. We define the capil-
lary number as the ratio between the viscous and the capil-
lary pressure drops over a pore of typical size a,

Ca =
�wQwa2

��0A
=

�wa2vw

��0
, �1�

where A=Wa is the cross-sectional area, Qw=8Q0 is total
flow rate of the wetting fluid, and vw is the Darcy velocity of
the wetting fluid.

A. Transient behavior

A first characteristic time in the transient regime is the
elapsed time from onset of invasion until the first break-
through of nonwetting fluid �air�. Recall that the model ini-
tially is filled with wetting fluid. We determine this break-
through time tb by visual inspection in each experiment. A
second characteristic time is when all signs of transient be-
havior vanish: the steady-state time tss. To some degree it is
possible to see the transition to steady state also by visual
inspection. However, as opposed to the breakthrough time,
which is sharply defined visually, the steady-state time is not
so sharply defined in this way.

In order to quantize the steady-state time, we make use of
the measured pressure curves. Figure 4 shows the evolution
of the pressure difference between �i� inlet and outlet and �ii�
middle point and outlet for each experiment. The pressure
saturates and fluctuates around some value at late times in all
cases. Prior to saturation there is a period of close to linear
increase in the pressure. By making a straight line fit to this
slope and flat line fit to the saturated value, we define their
crossing point to be the steady-state time tss, as shown in Fig.
4�a�. This definition is sharp and consistent in the sense that
this time is the same no matter which of the pressure mea-
surement points �inlet or middle� is used.

The resulting characteristic times versus the capillary
number are plotted in Fig. 5. Power-law fits are obtained as
shown in the legend. Leaving out details of the process one
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FIG. 4. �Color online� Time evolution of the pressure in each of
the six experiments, performed at different injection rate, which is
denoted in terms of the capillary numbers �a� Ca=0.17, �b� Ca
=0.90, �c� Ca=0.032, �d� Ca=0.015, �e� , and �f� Ca=0.027. The
upper black curves are the measured pressure differences between
the inlet and the outlet. The lower red �dark gray� curves are the
pressure differences between the middle of the model and the outlet.
The straight line fit to the pressure curves in �a� shows the determi-
nation of the steady-state time tss, i.e., at which time the system
enters into steady state.

TABLE II. For each of six experiments are given the capillary
number, the corresponding flow rate out of a single syringe pump
Q0, the total flow rate 15Q0, and the “total invasion flow rate” Qtot

inv

�see Fig. 14�. The difference between 15Q0 and Qtot
inv is due to com-

pressibility effects as will be discussed in Sec. III D. The capillary
number is calculated from Eq. �1�.

Ca
Q0

�ml/min�
15Q0

�ml/min�
Qtot

inv

�ml/min�

0.17 0.553 8.29 5.73

0.090 0.279 4.18 2.90

0.032 0.114 1.71 1.29

0.015 0.055 0.83 0.67

0.0079 0.023 0.41 0.35

0.0027 0.011 0.16 0.15

0.01 0.1
Ca

100

1000

t(
m

in
)

t
b

~ Ca
-0.89

t
ss
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-0.76

FIG. 5. Measured breakthrough time tb and steady-state time tss

as a function of the capillary number Ca.
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would expect these times to be proportional to the inverse
injection rate. The deviations in the found exponents are
small, but nevertheless indicating that there are variations in
invasion structure and saturation with Ca.

B. Steady state

In Sec. III A we learned that there exists a well-defined
transition to steady state based on analysis of the pressure
signal. This is a global criterion, meaning that the system as
a whole has reached a steady state. We wish to look at this
also on a local scale.

From the onset of invasion a frontal region establishes,
containing quite large nonwetting clusters �see Fig. 3�. Here,
the wetting saturation is somewhat larger than compared to
the region behind the frontal region. In addition the region
behind the front is more fragmented and homogeneous. We
claim that, locally, the region behind the front has already
entered into steady state. This is interesting because this hap-
pens very early in the process. The region with local steady
state grows as the front sweeps through the model. Two ar-
guments support this observation.

First, there is the fact that the pressure monitored by the
middle sensor increases linearly from a time tf right after the
front has reached the sensor �see Fig. 4�d��. This linear in-
crease has the same slope as the inlet sensor pressure until
steady state is reached globally �see Fig. 6�. For all experi-
ments we find that the pressure difference between the inlet
and the middle sensors, 	PI,M�tf 
 t
 tss�, during this linear
increase is hardly distinguishable from 	PI,M�t� tss�, as
shown in Fig. 6. Since the displacement rate is constant and
close to equal both in the transient and the steady states, it
follows from Fig. 6 that the relative permeability of the re-
gion behind the front must equal that of the later global
steady state.

Second, image analyses of parts of the model behind the
front in the transient regime as well as in global steady state
were performed, yielding similar results for saturation and
cluster distribution. This statistical equality and the above

results demonstrate that the region behind the front is in local
steady state.

The global steady state can be quantized by the averaged
global pressure drop between the inlet and the outlet,

	Pss =
1

tend − tss
�

tss

tend

	P�t�dt , �2�

where tend is the end time of the experiment and the nonwet-
ting fluid saturation Snw �see Figs. 7�a� and 7�b��.

Experimentally, saturation is not an easily accessible pa-
rameter and two approaches have been employed to deter-
mine the saturation �see Fig. 7�b��. A direct method uses the
measured amount of wetting fluid that leaves and enters the
model. It is in principle a precise method, but it is global.
Possible boundary effects, e.g., different saturations near
edges or corners, are ignored. Further, image analysis was
used by setting a certain grayscale clipping level, as de-
scribed in Sec. II, and then from the binary image count the
amount of wetting fluid.

One observes that the nonwetting saturation decreases
with increasing the total injected flow rate. The constraint
that the fractional flow is kept constant, a situation for which
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FIG. 6. �Color online� Pressure difference between inlet and
middle sensor 	PI,M as a function of time t for Ca=0.015. Three
characteristic times are indicated by dashed lines; the time at which
the front passes the middle sensor tf, the breakthrough time tb, and
steady-state time tss.
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FIG. 7. �a� Average steady-state pressure difference 	Pss vs cap-
illary number Ca. The solid line is a power-law fit to the measured
points giving an exponent �=0.54�0.08. Inset shows the
Gaussian-like PDF of 	P�t� tss�−	Pss. Note that for all experi-
ments the fluctuations are small and on the order of 1 kPa. �b� The
nonwetting saturation Snw as a function of the capillary number Ca.
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little previous results exists, makes it difficult to say whether
this is intuitively correct. Numerical studies have sought af-
ter relations between saturation and other flow properties
�33,34�. However, another factor, to be discussed in Sec.
III D, are possible compressibility effects. It is a priori not
clear that the saturation would be the same if the air were
incompressible. This is an issue that we will pursue in further
studies.

Figure 7�a� shows the mean steady-state pressure differ-
ence 	Pss as a function of the capillary number Ca. The
pressure fluctuations are small as shown in the pressure dis-
tributions PDF�	P−	Pss� in the inset of Fig. 7�a�. For all
experiments the standard deviation in 	Pss is on the order of
1 kPa. It is evident that 	Pss follows a power law in Ca,

	Pss  Ca�, �3�

with the exponent

� = 0.54 � 0.08. �4�

This behavior is by no means obvious �36�, and we will
return to a physical interpretation and quantitative derivation
of this result in Sec. III C.

C. Cluster size distributions

After the systems have entered into steady state, we have
analyzed images of the structure in order to determine the
size distribution of nonwetting clusters or bubbles. The nor-
malized probability density function �PDF� p�s� as a function
of cluster size s for all Ca numbers investigated is shown in
Fig. 8�a�. A trivial observation is the decrease in probability
with increasing cluster size. Less obvious is the fact that the
curves show an exponential-like cutoff depending on the
capillary number. Additionally there is a cutoff region for
smaller clusters, as the cluster size approaches the bead size.
Since the beads are counted as part of the clusters during
image analysis, we have no information at this size scale. For
the highest Ca numbers, the whole distribution is dominated
by the exponential cutoff. However, as the Ca number is
decreased, a small region of power-law-like behavior is ob-
served in between the two cutoffs.

Analogously to what is done in percolation theory �37�,
we assume that the distribution of the clusters follows the
PDF,

p�s�  s−� exp�− s/s�� , �5�

where s� is the cutoff cluster size. The latter function has
been fitted, using a proportionality constant � and s� as fit
parameters, to the experimental data for each Ca number.
This is shown by the solid lines in Fig. 8�a�. By averaging
the fitted � exponents it is found that �=2.07�0.18. The
uncertainty only reflects the difference in fitted exponents.
From the distributions it is seen that no power-law region is
well pronounced, and we do not claim that � is determined
with a large degree of certainty in this case. When it comes
to the cutoff cluster size, the fitted values of s� are found to
scale with Ca �Eq. �1�� as

s�  Ca−�, �6�

where �=0.98�0.07. This is shown in the inset of Fig. 8�b�.
One should note, even for the lowest Ca number, that s�

�105 pixels is considerably smaller than the system size
�107 pixels, meaning that large-scale finite-size effects
should not be of importance. Equation �5� predicts a rescal-
ing of the horizontal and the vertical axes with 1 /s� and s��,
respectively. On this basis the data collapse in Fig. 8�b� is
obtained.

From the above considerations, the cluster size PDF of
nonwetting clusters in steady state obeys the scaling function

p�s�  s�−�H�s/s�� , �7�

where H�x� contains an exponential cutoff �Eq. �5��, so that
p�s�→0 when x�1.

Up to now the cluster size measured in area was studied.
One step further is to consider the linear extension of the
clusters in the two directions: lx transverse to the overall
direction of flow and ly oriented along the overall direction
of flow. This is achieved by assigning a bounding box of
sides lx and ly to a cluster of size s, i.e., the smallest rectangle
that can contain the cluster. In the following, li, where i
� 	x ,y
, will denote both the lx and the ly extensions. It is
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FIG. 8. �Color online� Nonwetting cluster size PDF p�s� in
steady state for all experiments. The cluster size s is measured in
pixels; 1 pixel=0.037 mm2. �a� Normalized probability distribu-
tions. The dominating cutoff behavior is evident. The solid lines
represent fits of Eq. �5�. �b� The horizontal and the vertical axes are
rescaled with 1 /s� and s��, respectively, to obtain the data collapse.
The Ca dependence of the cutoff cluster size s� is shown in the
inset.
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found that the PDF of li for a given cluster size s, p�li �s�, is
a Gaussian. Additionally, for s�s�, the corresponding stan-
dard deviation � and mean �li of p�li �s� scale with the clus-
ter size as

� = A�s��, �8�

�li = Ais
�i, �9�

with prefactors A�=0.25 and Ai=1.12, where ��

=0.55�0.06 and �i=0.57�0.05. Within the limits of uncer-
tainty, �� and �i can be considered equal. The corresponding
prefactors yield

�/�li � 0.22, �10�

meaning that the standard deviation is roughly 22% of the
mean extension length.

The collapse of multiple p�li �s� PDFs of different cluster
sizes and Ca numbers and the scaling of Eqs. �8� and �9� are
shown in Figs. 9�a� and 9�b�, respectively. Figure 9�a� re-
veals a strong correlation between cluster size and linear ex-
tension, and we believe that the use of bounding boxes to
characterize the clusters is justified. It is evident from Fig.
9�b� that the scaling of �lx and �ly is equal for s�s�, a point
to which we will return shortly. However, at this stage we
note that the cutoff cluster size s� corresponds to a cutoff

extension length l�. From Eqs. �6� and �9� it follows that

l� = Ais
��i  Ca−��i. �11�

The similar scaling of �li for s�s� means that nonwetting
clusters fit into quadratic bounding boxes on the average and
can thus be considered isotropic at these sizes. This is seen
from Fig. 10 where �lx is plotted vs �ly, both rescaled with
the cutoff extension length l�. It is evident that the average
bounding box for �li� l� is quadratic, and furthermore this
behavior is independent of Ca. When �li reaches l�, equiva-
lent to the cluster size reaching s�, there is a crossover and
the clusters are seen to be somewhat elongated in the direc-
tion of flow on the average. Cluster elongation or anisotropy
is best emphasized by considering the average relative length
difference 	l / �ly, where 	l= �ly− �lx. The inset of Fig. 10
shows, for six Ca numbers, the relative length difference for
all cluster sizes. Each curve is characterized by a region
where the relative length difference is constant or only
slowly increasing, always less than 5%. As the cutoff cluster
size s� is reached, 	l / �ly increases significantly. Specifi-
cally, the largest sustainable clusters are roughly 30% longer
in the direction of flow than transverse to the direction of
flow.

To understand elongation, one has to consider how the
capillary pressure at the cluster perimeter is affected by a
surrounding viscous pressure field. In mechanical equilib-
rium, the surface pressure Pnw− Pw equals the capillary pres-
sure Pcap

Pnw − Pw = Pcap = �� 1

R1
+

1

R2
� , �12�

where R1 and R2 are the radii of curvature in the well-known
Young-Laplace law. The wetting fluid pressure difference
	Pw over a cluster of length ly can be approximated as
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FIG. 9. �Color online� The extension lengths li are measured in
pixel units; 1 pixel=0.19 mm. �a� Data collapse of multiple p�li �s�
PDFs, where i� 	x ,y
. The s values are picked from all experiments
and ranges over four decades. The collapse is obtained by a rescal-
ing predicted by the Gaussian distribution function. �b� Scaling of
�ly and �lx with s for all Ca numbers. The horizontal axis has been
rescaled with 1 /s� to emphasize that Eq. �9�, represented by the
solid red �dark gray� lines, shows deviations for s�s�. The inset
shows the scaling of � with s, �Eq. �8��.
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= �ly− �lx. 	l / �ly increases significantly when s� is reached.
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	Pw �
	Pss

L
ly , �13�

whereas the nonwetting fluid pressure Pnw is constant inside
the cluster. The capillary pressure over the interface of the
cluster will thus decrease in a direction opposite to that of the
overall flow, highest at the tip and lowest at the tail of the
cluster. As we shall see, this introduces anisotropy which will
depend on the crossover length l�.

In the case of steady-state simultaneous flow, the dynam-
ics of nonwetting clusters are influenced by a competition of
both drainage and imbibition processes. A pore is drained or
imbibed when the capillary pressure is above or below the
capillary threshold pressure for drainage Pc

D or imbibition Pc
I ,

respectively. Due to the randomness in the local geometry of
the porous medium, Pc

D and Pc
I are not fixed values. As dis-

cussed by Auradou et al. �38�, they will vary independently
from pore to pore according to their respective distribution
function. Furthermore, these distributions are isotropic.

Clusters of length ly 
 l� are observed from experiments to
migrate only small distances in the porous matrix. Usually
they get trapped and can only be remobilized by coalescing
with larger migrating clusters. Migration is the process
where drainage is followed by imbibition, so that a cluster
moves without changing its volume. The viscous pressure
field sets a length scale, below which the local geometry
dominates the choice of flow path. Above this length scale,
growth near the advancing tip and retraction near the reced-
ing tail are favored due to the now significant capillary pres-
sure difference between the cluster tip and tail.

As we have seen, clusters cannot grow infinitely large. It
is the occurrence of snap-offs �38� of the cluster tail, caused
by imbibition, that will determine the ly extension. The prob-
ability of a cluster snap-off will mainly depend on �1� the
difference between the average capillary pressure threshold

for drainage and imbibition P̄t= P̄c
D− P̄c

I and �2� the capillary
pressure difference 	Pcap= Pcap,tip− Pcap,tail �see Eq. �12�� be-
tween the advancing tip and receding tail of a cluster. Fur-
ther, snap-offs will typically occur when

	Pcap � P̄t. �14�

Using Eqs. �12� and �13� we obtain the following crossover
length scale from Eq. �14�:

	Pss

L
l� = P̄t, �15�

l� = P̄tL
1

	Pss
. �16�

Equation �16� predicts a cutoff length l�, inversely propor-
tional to 	Pss, over which clusters can stay connected. At
this point an important observation is made; inserting Eq. �3�
into Eq. �16�, we see that the cutoff length l� scales with the
Ca number as in Eq. �11�, provided �=��i. All of the latter
exponents have uncertainty, which within we can make the
reasonable claim that they are equal, and thus that our find-
ings are consistent with

l� 
L

	Pss
. �17�

To sum up, we claim that Eq. �17� controls the onset of �1�
cluster elongation or anisotropy as seen in Fig. 10, �2� snap-
offs and the size of the largest sustainable clusters as seen in
Fig. 8, and �3� cluster mobilization.

The scaling relation between 	Pss and Ca �Eq. �3�� can be
derived by the following argument of dissipation balance
�36�. Since the average interface area of the system will re-
main constant in steady state, all the power that is put into
the system goes into viscous dissipation. This dissipation
will then take place in the high viscous wetting fluid. The
flow pattern of the wetting fluid is best described as an in-
terchanging network in between the air clusters, containing
larger islands connected by narrow channels on the order of
a pore size wide. It is reasonable to assume that the majority
of viscous dissipation will take place in the narrow channels,
since the local flow velocity is much higher here. In this
respect it is also important to remember that the permeability
for the most part is set by the narrowest parts of the fastest
flow path through the medium. Islands of wetting fluid do
not contribute as much.

Careful visual observation indicates that the width of the
channels are typically one or a few pore widths, while the
spacing between these channels must be the characteristic
cluster length l�. This conceptual picture is illustrated in Fig.
11. Thus, the volume in which the dissipation happens is
then assumed to be the volume of these channels and will be
denoted as Vdis. We may then write the following proportion-
ality for Vdis:

Vdis  number of channels =
W

l�
 	Pss, �18�

where the last proportionality follows from Eq. �17�. On the
other hand, the total work per unit time which is done by the
pressure drop across the system must equal the internal dis-
sipation D, so that

a

y
L

W

l*

l*

Q

FIG. 11. A conceptual sketch of the assumed channel system.
Channels of the wetting fluid, of a characteristic width that coin-
cides with the pore width, are separated by a distance l�. Q indicates
the average direction of flow.
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15Q0	Pss = D  Vdisu
2, �19�

where u is the average flow velocity of the wetting fluid and
D is the integral over Vdis of u��P�. Furthermore, the pres-
sure gradient ��P�u thanks to Darcy’s law. The flow veloc-
ity u is set by the volume flux as

u 
Qw

Vdis


Qw

	Pss
�20�

by the use of Eq. �18�. Upon insertion of u in Eq. �19� we
may write in terms of the Ca number �CaQwQ0�

	Pss  �Ca, �21�

which is the scaling relation we set out to prove. Darcy’s law
allows us to write things in terms of a Ca-dependent effective
permeability ��Ca�. Since Darcy’s law takes the form

Qw =
�

�w

	Pss

L
, �22�

we immediately obtain

�  �Ca. �23�

We have already discussed the normalized PDF of non-
wetting clusters, p�s�, which was shown to obey a scaling
law in the cutoff cluster size s� �Eq. �7��, and thus also in the
capillary number Ca �Eq. �6��. We now turn to a discussion
of the PDF of li for all s, namely, the marginal PDF p�li�.
Since there is no one-to-one correspondence between li and
s, no exact analytical solution of p�li� can be obtained from
Eq. �5�. However, p�li �s� is Gaussian �Fig. 9�a�� and nar-
rowly peaked around �li �Eq. �10��. On this basis we would
expect p�li� to have similarities with the PDF

g�l� = p�s�
ds

dl
, �24�

g�l�  l−� exp�− � l

l��1/�i� , �25�

where

� =
� + �i − 1

�i
� 2.9. �26�

The function g�l� is thus the PDF obtained when assuming
that Eq. �9� applies for all li.

The PDFs p�ly� and p�lx� are plotted in Fig. 12�a�, and it is
evident that a cutoff behavior is dominant, similar to what is
found for p�s�. Furthermore, for the largest extension
lengths, the probability density p�ly� is larger than p�lx� for
all the Ca numbers. This is intrinsically linked to the fact that
large clusters are elongated in the direction of flow as dis-
cussed previously. We have already argued that there exists a
cutoff length l� common for both li directions. The observed
difference between p�lx� and p�ly� is thus due to different
cutoff behaviors in these PDFs as a consequence of elonga-
tion.

On the basis of Eq. �25� a rescaling of the form l��p�li� vs
li / l� is predicted. The corresponding data collapse is shown

in Fig. 12�b�. The exponent � is in this case taken as the
value giving the best collapse, and it is found that �
=2.8�0.3, in agreement with Eq. �26�. Again there is a
crossover as the extension length approaches the pore scale,
but above this scale the collapse is most satisfactory. The
small difference in the cutoff function, as discussed above, is
indicated by the two solid lines in Fig. 12�b�. Analog to Eq.
�7�, p�li� obeys the scaling function

p�li�  l�−�Gi�li/l�� , �27�

for clusters above the lower cutoff scale.
The imposed nonwetting flow rate during steady state

Qnw=7Q0 must on average equal the flux of nonwetting clus-
ters inside the model. As shown in �36�, this gives a normal-
ization condition that can be used to obtain the value of the
scaling exponent �, in Eq. �27�,

Qnw =
aN

L
�

a

�

dl l2U�l�p�l� , �28�

where we have skipped subindices. Here, N denotes the total
number of clusters. Below we show that this number de-
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FIG. 12. �Color online� �a� Plot of the linear extension PDF
p�lx� and p�ly� for various Ca numbers �similar symbol encoding as
in Fig. 10�. �b� shows a data collapse, predicted by Eq. �25�, of the
same curves. The red �dark gray� filled and black empty markers
represent lx and ly, respectively. The exponent � is taken as the
value that gives the best collapse, and it is found that �=2.8�0.3.
Solid black lines indicate the difference in cutoff function of p�lx�
and p�ly�.
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pends only very weakly on the flow rate. U�l� denotes the
average center of mass velocity of a cluster of extent l. This
function is assumed to be linear in Qnw and to depend only
on some function f�l / l��. As a first approximation one could
take f�l / l����l / l�−1�, where ��x� is the usual Lorentz-
Heaviside step function, since small clusters usually are im-
mobile,

U�l� =
Qnw

A
f�l/l�� . �29�

By insertion of the distribution of li in Eq. �27� and applying
the substitution x= l / l�, Eq. �28� gives

1 = l��3−��aN

V
�

a/l�

�

x2f�x�Gi�x�dx , �30�

where the integrand converges in both limits. In particular,
the lower limit corresponds to immobile clusters where
U�l�=0. If the total number of clusters N is constant with
respect to l� or Ca, we obtain immediately �=3. This is
consistent with our experimental findings. We wish however
to elaborate somewhat on the influence of N on the exponent
�, as measurements of N is found to have a weak, at most
logarithmic, dependence of l�. In counting the number of
clusters, there is an experimental technicality that needs to be
addressed. In the black and white images used in the cluster
analysis, both the glass beads that constitute the porous me-
dium and regions of air show up as white pixels. This means
that there is a size distribution of bead “clusters” that should
be disregarded from the real air cluster size distribution. Ana-
lyzing background images, i.e., images of the porous matrix
filled with the black wetting fluid only, it is found that the
distribution of glass beads does not exceed a size of s
=20 pixels as shown in the inset of Fig. 13. Thus, in obtain-
ing N we use s=20 pixels as a lower threshold for a cluster
to be counted. However, clusters of all sizes contain pixels

from both glass beads and air. As a consequence, when we
are above the typical bead size, a constant size fraction is
added to the original cluster size and it does not affect the
analysis in any way. When clusters approach the average size
of a glass bead, somewhat below the threshold, the extracted
area is largely dominated by the glass bead and we have little
information at this scale. This small-scale effect is most
dominant in high Ca-number experiments, as air clusters are
smaller here �low l� values�. In this case, the value of N will
be underestimated, since there are actual air clusters smaller
than the chosen glass bead threshold.

Figure 13 shows a weak decreasing trend in the number of
clusters N as a function of l�, with error bars corresponding
to glass bead cluster thresholds s= 	14,30
 pixels. As a mat-
ter of convenience, we quantify this dependence through a
power law and we find an exponent of −0.25�0.10 between
N and l�. Accounting for this dependence in Eq. �30�, the
exponent � is reduced and we obtain �=2.75, corresponding
well with the experimental value. Using this � we obtain
through Eq. �26� an exponent ��2 for the cluster size PDF.
This is also in good agreement with the found experimental
value.

D. Compressibility effects

In addition to the pressure, we record the volume of wet-
ting fluid flowing out of the model, Vout. This is shown in
Fig. 14 for the Ca=0.032 experiment. If the fluids were in-
compressible, the total outflow would equal the total inflow,
i.e., 15Q0, until the first nonwetting fluid is produced. For t

 tss we define the total invasion flow rate as Qtot

inv

=dVout /dt. One observes that this slope is smaller than 15Q0,
which is caused by air compression as the pressure increases.
For each experiment this slope is found to be roughly con-
stant, with values listed in Table II. As steady state is
reached, i.e., t� tss, we expect a total flow rate of Qtot
�15Q0. At this point the pressures are relaxed at a constant
average value, and the air is not compressed any further,
meaning that a flow rate of Q0 is obtained from all seven
air-filled syringes.
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FIG. 13. Total number of clusters N in the system of area A
=L�W as a function of the crossover length l�. The upper and the
lower limits of the error bars correspond to a chosen threshold of
s=14 and s=30, respectively. Inset shows the size PDF of glass
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FIG. 14. The solid line is the measured accumulated outflow of
the wetting phase since the start of the experiment. After the steady-
state time tss the slope of this curve equals 8�Q0 as one should
expect since this is the injection rate of the wetting phase. However,
for t
 tss the pressure increases in the model, thus compressing air,
and therefore the outflow of wetting fluid Qtot

inv is less than 15
�Q0 which one would expect in the case of incompressible fluids.
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As an example, for Ca=0.17 the inlet and the outlet pres-
sures during steady state are �55 and �5 kPa, respectively.
This gives a pressure difference of �50 kPa as seen in Fig.
4�a�. This means that air entering the model has a com-
pressed volume of roughly �2 /3 relative to the volume at
the outlet. The question is to what extent air compressibility
affects the flow dynamics and structure, i.e., compared to the
flow of two incompressible fluids.

We claim that most of the expansion of compressed air
happens during short time intervals through “avalanches” in
the porous medium. In the following a qualitative description
will be given. This phenomenon is a study in its own respect,
and a quantitative analysis is beyond the scope of this paper.
From visual inspection it is observed that air is frequently
blocked out by the local configuration of wetting fluid
around one or more of the air inlet nodes. This causes further
compression and thereby a pressure increase in the air tubes.
As the pressure continues to increase, the air is seen to
slowly displace the blocking wetting fluid. At some point an
avalanche of expanding air is triggered and the air and inlet
pressure drop abruptly. The avalanche is characterized by
channels, not more than a pore size wide, created between
existing nonwetting clusters. The temporarily existing non-
wetting cluster is narrow in the lx direction but spans the air
invaded region in the ly direction. This means that an ava-
lanche cluster reaches from the originating inlet node to ei-
ther the displacement front or all the way through the model,
dependent on whether the system is in the transient or in the
steady state, respectively. During an avalanche in the tran-
sient state, air is seen to propagate rapidly to the displace-
ment front where it expands surrounded only by the wetting
fluid. This rapid propagation of expanding air is also seen in
steady state but the air is now immediately transported to the
model outlet. The time scale of an avalanche is on the order
of �1 s. During this time, a signature of the avalanche is
seen as a spike in the pressure signal from the middle and the
outlet pressure sensors. As the pressure inside the avalanche
cluster relaxes, the interconnecting channels are imbibed by
the surrounding wetting fluid and the displacement now re-
turns to “normal.” Being a highly dynamical phenomenon,
the flow of expanding air in avalanches is visually striking.
Figure 15 shows an avalanche through the central part of the
model, also compared to normal displacement during the
same time interval.

It is not trivial to obtain the details of how the flow dy-
namics is affected by compressibility of the nonwetting fluid.
It is clear that the avalanches occurring on small time scales
are solely an effect of compressibility. However we believe
that the results of our statistical analysis of clusters would be
the same as in the incompressible case. Mainly there are two
arguments supporting this. �1� From the above description of
avalanches it is natural to assume that most of the com-
pressed air volume inside clusters is released during an ava-
lanche. Hence in between avalanches, the normal motion,
breakup, stranding and coalescing of clusters would be as in
the incompressible case. �2� Intuitively one might imagine
that compressible clusters would expand and grow larger
when moving toward lower pressure at the outlet, thus giving
a position dependence of the cluster PDF and saturation. This
is however not the case as shown in Fig. 16, where the dis-

tribution of clusters from two different regions of the model
are compared and found to be identical. Thus, the saturation
and the distribution of clusters are homogeneous throughout
the model, as expected for an incompressible system. This
can be explained by recalling the importance of the viscous
pressure drop in the wetting fluid, which in essence deter-
mines the size of nonwetting clusters through the cutoff
length or size, as argued previously. Either if clusters expand
due to compressibility or, e.g., because two smaller clusters
coalesce to make one big cluster, snap-off will occur at the
cutoff size regardless of the origin of growth.

(b)(a)

FIG. 15. �Color online� A central region of the model, �17
�17� cm consisting of �104 pores, is captured with a fast camera
during steady state �Ca=0.090�. Flow direction is from top to bot-
tom. By subtracting two images of the displacement structure, sepa-
rated in time by 	t�1 s, pores imbibed or drained �bright regions�
during this time can be distinguished from pores of unchanged fluid
configuration �dark regions�. �a� Normal displacement. Pore fluid
configurations are close to unchanged during 	t. �b� Avalanche
through the same region as depicted in �a�. In this case the fluid
configurations are drastically changed in a narrow central part of the
image during 	t as the avalanche passes through. This is the signa-
ture of air expanding rapidly through the region.
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IV. CONCLUSION

Simultaneous two-phase flow in porous media has been
studied experimentally, in a large quasi-two-dimensional
laboratory model of roughly �105 pores. We use a gas-liquid
phase pair, resulting in a low viscosity ratio M �10−4. Both
the transient and the steady states of this system have been
considered.

The mixed displacement structure of wetting and nonwet-
ting fluids is more complex than what is found in the tran-
sient regimes of, e.g., capillary or viscous fingering. Due to
the simultaneous flow of high viscous wetting fluid, clusters
of low viscous nonwetting fluid will be snapped off from the
inlet nodes. The competition of both drainage and imbibition
causes fragmentation of the nonwetting fluid, and the dynam-
ics is characterized by the movement and mixing of discreet
nonwetting clusters in a background field of wetting fluid.
Initially, the fragmentation and the mixing of fluids increase,
but are seen to stabilize when the most advanced parts of the
front have reached roughly halfway through the model. At
this point the invasion structure consists of a heterogeneous
region at the front and a homogeneous region further behind,
locally in steady state, similar to that of later global steady
state. It is an important result, because this kind of similarity
between transient and steady regimes is far from obvious.

The probability distribution of the size of nonwetting
clusters exhibits a clear cutoff for all Ca numbers investi-
gated during steady state. No clear power-law behavior is
found, however, for larger clusters reasonable fits are ob-
tained to Eq. �5�. We find ��2 and that the cutoff cluster
size s� is inversely proportional to the capillary number. Ad-
ditionally a scaling relation is found between the mean ex-
tension length �li and s�s�, equal in both directions with
the exponent �i�0.57. Clusters at these sizes are thus iso-
tropic. Clusters above s� are elongated in the direction of
flow due to the anisotropic influence of the viscous pressure
field. From these scaling relations we demonstrate experi-
mentally and theoretically the important result that both 1 / l�

and 	Pss scale approximately as the square root of the Ca
number.

The observed avalanche behavior, occurring in the com-
pressible nonwetting phase, is an interesting phenomenon

that we have not explored fully in this work. To the best of
our knowledge, this kind of dynamics in a gas-liquid system
in porous media has not previously been reported. To char-
acterize and obtain a better understanding of these dynamical
events is certainly something worthy to pursue.

In a recent paper by Ramstad and Hansen �35�, cluster
size distributions during steady-state two-phase flow in a po-
rous medium was studied numerically for M =1, i.e., viscos-
ity match of the fluid pair. They found that below a critical
value of the nonwetting fluid saturation, the nonwetting clus-
ter size distribution was dominated by a cutoff behavior
similar to what have been presented here. Above the critical
saturation value, power-law behavior was observed. Due to
the large difference in viscosity contrast between our experi-
ments and these simulations, no direct comparison can be
made. Nevertheless, it would be interesting to perform future
experiments with the intention of exploring such a critical
value.

Despite the variety of findings in this study, only a small
part of the parameter space was explored. Our theoretical
predictions should be used as a starting point of incorporat-
ing the more complex case of, e.g., viscosity matched fluids.
Thus, we would like in the future to consider experiments
where the two phases has more similar viscosities and also
the possibility of tuning the wetting and the nonwetting fluid
flow rates independently. At the present time, preliminary
results indicate that the flow dynamics show no strong de-
pendence of the latter flow parameter. Finally, the question of
any history dependence of the global steady state is impor-
tant. It is not obvious that the system will reorganize itself to
a unique steady-state structure independent on initial tran-
sients. However, a preliminary steady-state experiment, ini-
tially at Ca=0.0027 and then increased to Ca=0.032, shows
that the structure organizes into a statistically identical struc-
ture as in an ordinary Ca=0.032 experiment.
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